Friday 14 July 2017

Definição De Modelo De Média Ponderada


Média Variável ponderada linearmente DEFINIÇÃO da média móvel ponderada linearmente Um tipo de média móvel que atribui uma maior ponderação aos dados de preços recentes do que a média móvel comum simples. Esta média é calculada tomando cada um dos preços de fechamento em um determinado período de tempo e multiplicando-os por sua determinada posição na série de dados. Uma vez que a posição dos períodos de tempo foram contabilizados, eles são somados e divididos pela soma do número de períodos de tempo. DISCAPACÃO PARA BAIXO Média móvel ponderada linearmente Por exemplo, em uma média móvel de 15 dias, linearmente ponderada, o preço de fechamento de hoje é multiplicado por 15, onzas por 14, e assim por diante até o dia 1 no intervalo de períodos alcançado. Estes resultados são então adicionados em conjunto e divididos pela soma dos multiplicadores (15 14 13. 3 2 1 120). A média móvel linearmente ponderada foi uma das primeiras respostas a atribuir maior importância aos dados recentes. A popularidade desta média móvel foi diminuída pela média móvel exponencial. Mas, no entanto, continua a ser muito útil. Mover média Média de dados da série temporal (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride soltando o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito das variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado alisamento) para mostrar a tendência dos dados mais claramente e (3) realçar qualquer valor acima ou abaixo do tendência. Se você está calculando algo com variância muito alta, o melhor que você pode fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando descobrir alguns números que mudam frequentemente, o melhor que você pode fazer é calcular a média móvel. Médias móveis: o básico Ao longo dos anos, os técnicos encontraram dois problemas com a média móvel simples. O primeiro problema reside no período de tempo da média móvel (MA). A maioria dos analistas técnicos acredita que a ação de preço. O preço das ações de abertura ou fechamento, não é suficiente para depender para prever adequadamente comprar ou vender sinais da ação de cruzamento de MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel suavemente exponencial (EMA). (Saiba mais em Explorando a média móvel ponderada exponencialmente.) Um exemplo Por exemplo, usando um MA de 10 dias, um analista tomaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez que o total foi determinado, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo MA de 10 dias, o número é 55. Este indicador é conhecido como a média móvel linearmente ponderada. (Para leitura relacionada, verifique as Médias móveis simples, faça as tendências se destacarem.) Muitos técnicos são crentes firmes na média móvel suavemente exponencial (EMA). Este indicador foi explicado de muitas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): a média móvel suavemente exponencial aborda os dois problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um peso maior aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, enquanto atribui menor importância aos dados de preços passados, ele inclui no cálculo de todos os dados da vida útil do instrumento. Além disso, o usuário pode ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dos dias anteriores. A soma de ambos os valores percentuais é de 100. Por exemplo, o preço dos últimos dias pode ser atribuído a um peso de 10 (.10), que é adicionado aos dias anteriores de peso de 90 (.90). Isso dá o último dia 10 da ponderação total. Este seria o equivalente a uma média de 20 dias, ao dar ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média em Movimento Suavizado Exponencialmente O gráfico acima mostra o Índice Composto Nasdaq desde a primeira semana de agosto de 2000 até 1º de junho de 2001. Como você pode ver claramente, o EMA, que neste caso está usando os dados de preço de fechamento ao longo de um Período de nove dias, tem sinais de venda definitivos no 8 de setembro (marcado por uma seta para baixo preta). Este foi o dia em que o índice caiu abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. A Nasdaq não conseguiu gerar volume e interesse dos investidores de varejo para quebrar a marca de 3.000. Ele então mergulhou de novo para baixo em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcada por uma seta. Aqui, o índice fechou em 1.961,46, e os técnicos começaram a ver os gerentes de fundos institucionais começar a retirar algumas pechinchas como a Cisco, a Microsoft e alguns dos problemas relacionados à energia. (Leia nossos artigos relacionados: Envelopes médios móveis: Refinando uma ferramenta de comércio popular e um salto médio em movimento.)

No comments:

Post a Comment